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Abstract—In motion planning problems for autonomous robots,
such as self-driving cars, the robot must ensure that its planned
path is not in close proximity to obstacles in the environment.
However, the problem of evaluating the proximity is generally
non-convex and serves as a significant computational bottleneck
for motion planning algorithms. In this paper, we present methods
for a general class of absolutely continuous parametric curves
to compute: (i) the minimum separating distance, (ii) tolerance
verification, and (iii) collision detection. Our methods efficiently
compute bounds on obstacle proximity by bounding the curve in
a convex region. This bound is based on an upper bound on the
curve arc length that can be expressed in closed form for a useful
class of parametric curves including curves with trigonometric or
polynomial bases. We demonstrate the computational efficiency
and accuracy of our approach through numerical simulations1 of
several proximity problems.

I. INTRODUCTION

Autonomous robots often operate in rapidly changing en-
vironments, and the ability to accurately and quickly predict
future collisions is crucial for safely meeting task objectives.
As proximity queries serve one of the major bottlenecks in
motion planning frameworks [18], algorithms that efficiently
assess the proximity of obstacles relative to the future states of
the robot will greatly improve the run-time performance of the
robot while guaranteeing safe operating procedures.

Fast methods for computing proximity queries between
polyhedral objects have been widely studied and developed
over the past few decades. The algorithms described in [13, 22]
perform several different types of proximity queries between
convex polytopes. Proximity between general polyhedral objects
using hierarchical representations of convex bounding volumes
are investigated in [21] and [14]. In [9], the authors evaluate the
proximity queries for polyhedral objects using convex surface
decomposition.

It is challenging to assess the proximity between objects
in motion. Recent work has focused on developing methods
for computing continuous collision detection (CCD), a type
of query that evaluates the first time of contact between
objects in motion. The most practical of these methods is
known as conservative advancement, introduced in [39] and
[33], and performs several static proximity queries between
polyhedral or polygon-soup objects to accurately perform CCD
queries. Conservative advancement has been applied in trajectory
refinement algorithms [26] to obtain collision-free cubic B-spline

1The implementation can be found at https://github.com/arlk/
CurveProximityQueries.jl.
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Fig. 1: Points closest between (a) a convex polygon and a Bézier curve,
and (b) an involute of a circle and a heart-shaped curve.

trajectories. However, in the context of motion planning, such
methods are computationally expensive and lack the ability to
evaluate other proximity queries such as the minimum separating
distance or tolerance verification between moving objects. As
modern motion planning and trajectory optimization methods
generate candidate paths as rectifiable parametric curves (e.g.
Lagrange polynomials [31], Legendre polynomials [24], Bézier
curves [7, 8, 29], B-splines [34], Dubins paths [35], Pythagorean
Hodograph curves [28]), the proximity algorithms must be able
to handle such representations.

Generally, proximity to parametric curves is handled by
algberaic, interval analysis, or curve subdivision methods.
Finding multiple intersections between parametric curves by
implicitization and eigenvalue decomposition is discussed in
[23]. In [10], the authors present an approach to compute
the exact minimum separating distance between differentiably
continuous freeform curves by solving a set of nonlinear
equations. Computing the minimum separating distance between
Bézier curves by sweeping a sphere along one of the curves and
eliminating sections of the curve which lie outside of it through
subdivision was introduced in [6]. A similar technique [25] was
used to find the closest point on a free form curve to a point
in free space. In [5], the authors present an efficient method
for computing the minimum separating distances to Bézier
curves using subdivision methods. The curves are recursively
subdivided until the bounds on the minimum separating distance
between the control polygons for each of the curves are within
some prescribed accuracy. However, these methods do not hold
in general for parametric curves and lack the computational
efficiency to be used in motion planning algorithms.

In this paper, we introduce a family of algorithms to evaluate
the (i) minimum separation distance, (ii) tolerance verification,
and (iii) collision detection queries between absolutely continu-



ous parametric curves and obstacles. The obstacles are defined
as convex polytopes, parametric curves, or any other compact
set to which minimum distances can be computed, Figure 1.
A main feature of the proposed algorithms is their ability to
provide proximity queries for a large class of parametric curves,
more general than ones that have been considered previously
[23, 10, 6, 25, 5]. Such queries are useful in scenarios when
the motion planner’s candidate path (i) incurs a distance-based
penalty for approaching close to an obstacle, (ii) must keep a
safe distance from an obstacle, or (iii) must not intersect with
the obstacle’s geometry.

Our main contributions are summarized as follows:
• Efficient computation of convex hulls for a general class

of absolutely continuous parametric curves based on the
arc length for any sub-interval in their domain.

• Fast procedures to evaluate the minimum separating dis-
tance, tolerance verification, and collision detection queries
using interval branch-and-bound methods.

We present the problem formulation for the different query
types in Section I. The analysis and results for the construction
of convex hulls for parametric curves that provide bounds on
the minimum separating distance is provided in Section III. In
Section IV, the algorithms for each of the proximity queries are
outlined. Finally, in Section V we present numerical examples
and benchmarks to illustrate the efficacy of these methods.

II. PROBLEM FORMULATION

The parametric equation of a curve is given by a function
ψ : I → Rd, where I ⊂ R is a compact interval such that
|I| > 0, and d ∈ N. We define the curve over the closed sub-
interval Q ⊆ I (such that |Q| > 0) as the following compact
set

ΨQ = {ψ(t) ∈ Rd : t ∈ Q}. (1)

We proceed to define the proximity query problems between a
curve ΨI and an object B represented as a nonempty compact
set in Rd under the following assumptions.

Assumption 1. The function ψ is absolutely continuous over its
entire domain I , i.e., for every ε > 0 there exists a δ > 0, such
that for each n ∈ N, if the collection of mutually disjoint closed
sub-intervals {[αi, βi] | i = 1, . . . , n} satisfies

∑
i |αi−βi| < δ,

then
∑
i ‖ψ(αi)− ψ(βi)‖ < ε.

Assumption 2. The function ψ is not a constant map over the
entire domain I, i.e., ψ(t) 6= y for all t ∈ I for some y ∈ Rd.

Problem 1 (Minimum Separating Distance). The minimum
separating distance between the parametric curve ΨI and the
compact set B is defined as

dmin(ΨI ,B) = min
a∈ΨI ,b∈B

‖a− b‖. (2)

The points ψ(t∗) ∈ ΨI and b∗ ∈ B that verify

dmin(ΨI ,B) = ‖ψ(t∗)− b∗‖,

are the pair of points that lie closest to each other on the respec-
tive sets, as shown in Figure 2(a). In addition to considering
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Fig. 2: (a) The red dashed line shows the segment connecting the pair
of closest points between ΨI and B respectively. (b) The red shaded
region specifies the ∆-tolerance afforded to B when computing the
tolerance verification between the two objects.

the minimum separating distance over the entire curve, ΨI ,
the definition can be applied to some continuous compact sub-
interval, Q ⊆ I , of the curve as well. This section of the curve
is referred to by ΨQ.

Problem 2 (Tolerance Verification). Tolerance verification is
defined as a predicate function with three arguments; two objects,
ΨI and B, and a tolerance, ∆ > 0. The function evaluates the
inequality

dmin(ΨI ,B) > ∆ (3)

and returns either true or false. Figure 2(b) depicts a scenario,
when a curve is separated from a compact set by a distance
greater than ∆.

Problem 3 (Collision Detection). The collision detection
function is defined as a predicate function with two arguments.
These arguments are two objects, ΨI and B. The function
determines the truth of the following statement:

ΨI ∩ B 6= ∅. (4)

Remark. Notice that the solution of Problem 1 implies the
solution of Problem 2, which in turn implies the solution of
Problem 3. Nevertheless, defining each problem by itself is
useful because, as we will see in Section IV, the numerical
methods can be specifically tailored for each problem in order
to improve its computational efficiency.

III. BOUNDING METHODS AND ANALYSIS

The problems discussed in Section II are generally non-convex
and difficult to solve2. Additionally, when a feasible solution
is found it is still difficult to verify that the solution is indeed
the global minimum. However, methods that rely on branch-
and-bound and interval analysis [17] obtain a solution with a
certificate of its optimality within some prescribed accuracy.
This is achieved by successively branching the problem into
smaller and smaller sub-problems over which bounds on the
optimal solution are computed through relaxation. In this section
we present the results and the analysis behind the relaxation of
Problem 1 and its sub-problems.

2Non-convex problems are considered to be at least NP-hard.



A. Upper Bound on the Length of a Curve

As the presented methods require the computation of the arc
length of parametric curves, we will only consider parametric
curves that are rectifiable i.e. they possess a finite arc length
over their domain. The absolute continuity of ψ over I is a
sufficient condition [16] for the curve to be rectifiable3, and the
corresponding arc length function over the interval Q ⊆ I is
defined as

sψ(Q) =

∫
Q
‖ψ′(t)‖ dt, (5)

where ψ has a finite derivative ψ′ almost everywhere and is
Lebesgue integrable.

As branch-and-bound techniques involve repeated calculations
on the curve, for reasons having to do with computational
efficiency, it is extremely desirable to have a closed-form
expression for the antiderivative of the square root of the inner
product of ψ′. However, the arc length of rectifiable parametric
curves cannot be obtained in general. Even for simple curves
described with polynomial or sinusoidal basis functions, one
cannot express the integral in terms of elementary functions. In
the following result, we introduce an upper bound on sψ(Q)
in Equation (5) that is better suited to provide a closed-form
expression.

Lemma 1. Let ψ be an absolutely continuous function and
have a derivative ψ′ on the compact interval I. For any closed
Q ⊆ I define the upper bound

uψ(Q) =

√
|Q|

∫
Q
ψ′(t)>ψ′(t) dt, (6)

where |Q| is the length of the sub-interval. Then for the arc
length function of the curve sψ (from Equation (5)) the following
inequality holds

sψ(Q) ≤ uψ(Q).

Proof: Consider the arc length function given in Equa-
tion (5). Expanding the Euclidean norm and scaling both sides
yields

1

|Q|
sψ(Q) =

1

|Q|

∫
Q

√
ψ′(t)>ψ′(t) dt.

Note that ψ′(t)>ψ′(t) is a strictly positive real-valued function
and that the square root function is concave on the interval
[0,∞). Using Jensen’s inequality we have

1

|Q|

∫
Q

√
ψ′(t)>ψ′(t) dt ≤

√
1

|Q|

∫
Q
ψ′(t)>ψ′(t) dt.

Multiplying by |Q| on both sides gives the result.
For common parametric curves with polynomial or trigono-

metric basis functions, such as the ones typically employed in
trajectory generation methods [34], the antiderivative for the
inner product of ψ′ is readily available, which greatly reduces
the computation time. In Table I, notice the improvement in

3More generally, any function of bounded variation is rectifiable [20],
however, the derivatives for such functions may not exist almost everywhere.

computation time when the antiderivative is known in closed-
form.

Parametric Equations Median Time (ns)
sψ(Q) uψ(Q)

(2 cos(t), sin(t)) 1710.70 58.02
((t3 + t), t) 1673.80 44.69

((t+ 1)−1, t) 2102.11 38.43

TABLE I: Comparison between the median evaluation time for
computing sψ(Q) and uψ(Q) for several different intervals Q ⊆ [0, 1].
For each example presented in the table, the antiderivative of the
integrand in Equation (5) is not available in closed form and must be
numerically integrated, whereas the antiderivative of the integrand in
Equation (6) is available in closed-form. The numerical integration
uses the Gauss-Kronrod quadrature formula procedure over 15 points.

B. Convex Hull on Sub-intervals of a Curve

The following theorem establishes a convex hull for paramet-
ric curves on any sub-interval based on their upper bound of
the arc length from Equation (6).

Theorem 1 (Convex Hull). Let ψ be an absolutely continuous
function defined on the compact interval I. For any closed
interval [α, β] ≡ Q ⊆ I, define the convex compact set

UQ = {x ∈ Rd : ‖ψ(α)− x‖+ ‖x− ψ(β)‖ ≤ uψ(Q)}. (7)

Then the curve defined on the interval Q satisfies

ΨQ ⊂ UQ. (8)

Proof: It is obvious that the shortest distance between two
points in Euclidean space is the length of the chord joining
them. Therefore for all t ∈ [α, β] the following must hold

‖ψ(α)− ψ(t)‖+ ‖ψ(t)− ψ(β)‖ ≤ sψ([α, t]) + sψ([t, β]).

Then, from the definition of the arc length in Equation (5)
we have that sψ([α, t]) + sψ([t, β]) is the sum of integrals
on adjacent intervals. Since ψ is rectifiable, the integrals are
combined as the total arc length on Q, implying that

‖ψ(α)− ψ(t)‖+ ‖ψ(t)− ψ(β)‖ ≤ sψ(Q).

Recall that since sψ(Q) ≤ uψ(Q) from Lemma 1, then every
point on the curve evaluated over the interval Q is an element
of the set UQ, i.e.

ψ(t) ∈ UQ.

From the definition of the curve in Equation (1) it follows that
ΨQ ⊂ UQ.

The convex hull in Theorem 1 is a compact interval for curves
in R, and is also an ellipsoid for curves in higher dimensions.
This geometric relationship to an ellipsoid is particularly useful
because there are several methods [13, 30, 4] to cheaply compute
the minimum separating distance to an ellipsoid. For a convex
hull UQ of the function ψ evaluated over a sub-interval [α, β] ≡
Q ⊆ I, the foci of the ellipse are at ψ(α) and ψ(β). The
major axis has a length of uψ(Q), and the minor axes are of



equal lengths
√
uψ(Q)2 − ‖ψ(α)− ψ(β)‖2. This construction

is illustrated in Figure 3.

Remark. Fat arcs [32, 1] provide tighter bounds with cubic
convergence, however, the non-convexity of the bounding region
is problematic when computing proximity queries. Additionally,
they are only useful in the context of planar Bézier curves and
spirals. The convergence behavior of the ellipsoidal bounding
region to the curve will be explored in the future.

Fig. 3: The blue shaded region shows the convex set UQ, which contains
the function ψ evaluated over the sub-interval [α, β]. The dashed-line
is the evaluation of ψ over its entire domain.

C. Relaxation of Problem 1

Now that we have enclosed a parametric curve inside a convex
hull, Problem 1 can be relaxed, and a more tractable problem
can be solved by computing the minimum separating distance to
the convex hull. The solution to this relaxed problem provides
a lower bound to the optimal solution of the original problem.
We define this lower bound on the minimum separating distance
dlb between ΨQ and a compact set B as

dlb(ΨQ,B) = min
x∈UQ,b∈B

‖x− b‖, (9)

where UQ is the convex hull corresponding to ΨQ from
Equation (7). Figure 4(a) shows the lower bound between a
convex polygon and a parametric curve evaluated over a sub-
interval. As one might expect, if the object B is also a parametric
curve, then dlb is computed between the convex sets constructed
from each of the curves (as shown in Figure 4(b)), as

dlb(ΨQ,ΦR) = min
x∈UQ,y∈VR

‖x− y‖, (10)

where ΦR is the parametric curve φ : R ⊃ R → Rd, and VR
is the convex hull of ΦR.

In addition to the lower bound, an upper bound on the optimal
solution must also be defined in order to bound the solution in a
compact interval. The upper bound on the minimum separating
distance dub between ΨQ and a compact set B is given by

dub(ΨQ, B) = min
b∈B
‖x′(ΨQ)− b‖, (11)

such that x′(ΨQ) ∈ ΨQ. Similarly, dub between the two
parametric curves ΨQ and ΦR is

dub(ΨQ,ΦR) = ‖x′(ΨQ)− x′′(ΦR)‖, (12)

(a) (b)

Fig. 4: Lower bound on minimum separating distance between (a) a
parametric curve and a convex polygon, and (b) two parametric curves.

such that x′(ΨQ) ∈ ΨQ and x′′(ΦR) ∈ ΦR. In the numerical
implementation as seen in Figure 5, the functions x′ and
x′′ select the middle points of ΨQ and ΦR respectively.
Heuristics to select points in the curve set based on the relative
configuration of the objects rather than simply the midpoints
may find tighter bounds, however, this is beyond the scope of
the paper.

(a) (b)

Fig. 5: Upper bound on minimum separating distance between (a) a
parametric curve and a convex polygon, and (b) two parametric curves.

We present analysis on the functions dlb and dub. We show
for each interval Q ⊆ I that indeed these functions bound the
optimal solution on that interval, and that the difference in upper
and lower bounds converges uniformly to zero as |Q| → 0. The
boundedness and uniform convergence results are necessary in
order to guarantee the convergence of interval branch-and-bound
algorithms in finite time.

Theorem 2 (Boundedness). Let B be a compact set in Rd, and
ΨI be the curve ψ : I → Rd. Then, for every closed Q ⊆ I,
we have

dlb(ΨQ,B) ≤ dmin(ΨQ,B) ≤ dub(ΨQ,B). (13)

Proof: It is clear that for all t′ ∈ Q ⊆ I

min
t∈Q,b∈B

‖ψ(t)− b‖ ≤ min
b∈B
‖ψ(t′)− b‖,

which proves the result that dmin(ΨQ,B) ≤ dub(ΨQ,B). Recall
from Theorem 1 that ΨQ ⊂ UQ, which implies

min
a∈UQ,b∈B

‖a− b‖ ≤ min
a∈ΨQ,b∈B

‖a− b‖.

Thus, dlb(ΨQ,B) ≤ dmin(ΨQ,B), and we have the result.

Theorem 3 (Uniform Convergence). Let B be a compact set
in Rd, and ΨI be the curve ψ : I → Rd. For every ε > 0,



there exists a δ > 0 such that for all {Q : Q ⊆ I, |Q| < δ}, we
satisfy

dub(ΨQ,B)− dlb(ΨQ,B) < ε. (14)

Proof: For any Q ⊆ I recall that

dub(ΨQ,B)− dlb(ΨQ,B) = min
b∈B
‖x′(ΨQ)− b‖ − ‖x∗ − b∗‖,

such that x∗ ∈ UQ and b∗ ∈ B minimize Equation (9). Since
minb∈B ‖x′(ΨQ)−b‖ will be bounded from above by any other
element in the set B, we have the following inequality:

dub(ΨQ,B)− dlb(ΨQ,B) ≤ ‖x′(ΨQ)− b∗‖ − ‖x∗ − b∗‖.

From the reverse triangle inequality we have

dub(ΨQ,B)− dlb(ΨQ,B) ≤ ‖x′(ΨQ)− x∗‖.

Then from Theorem 1, we know that the largest variation of
elements in UQ is bounded by the upper bound of the arc length,
uψ(Q). And, since x′(ΨQ) ∈ ΨQ ⊂ UQ and x∗ ∈ UQ, we get

dub(ΨQ,B)− dlb(ΨQ,B) ≤ uψ(Q).

From Equation (6), we expand uψ(Q) with the expression

dub(ΨQ,B)− dlb(ΨQ,B) ≤

√
|Q|

∫
Q
ψ′(t)>ψ′(t) dt.

Since ψ is real valued, the inner product of ψ′ is strictly
positive. Thus, we further upper bound our expression by
expanding the limits of integration with I ⊇ Q. Define
0 < k =

∫
I ψ
′(t)>ψ′(t) dt. Then we have

dub(ΨQ,B)− dlb(ΨQ,B) ≤
√
|Q|k.

Thus, for every ε > 0, choose δ = ε2

k so that for all Q ⊆ I
such that |Q| < δ we get

dub(ΨQ,B)− dlb(ΨQ,B) < ε.

Remark. The minimization problems of Equations (9) and (11)
may also be nonconvex depending on the geometry of B. We
refer readers to [13, 22] for convex polytopes and [14, 21] for
more complex models.

IV. PROXIMITY QUERIES

Given the boundedness results of Theorem 2 and the conver-
gence results of Theorem 3, we present algorithms that evaluate
the solutions to Problems 1 to 3 within some tolerance. Central
to each of these algorithms is a process of interval subdivision
and bounding. First, we present the methods to compute the
minimum separating distance between a parametric curve and a
compact set (or another parametric curve). Later, we highlight
the variations of this algorithm for evaluating the tolerance
verification and collision detection queries without computing
the minimum separating distance between the objects.

Algorithm 1 Minimum Separating Distance (ΨI , B)

1: L ← {I}
2: d← dub(ΨI ,B)
3: d← dlb(ΨI ,B)
4: while d− d > ε do
5: X ← argminQ∈L dlb(ΨQ,B)
6: XL,XR ← split(X )
7: L ← L \ {X}
8: L ← L ∪ {XL,XR}
9: d← minQ∈L dub(ΨQ,B)

10: d← minQ∈L dlb(ΨQ,B)
11: end while
12: return d

A. Minimum Separating Distance

Given a parametric function ψ : I → Rd, Algorithm 1
computes the minimum separating distance between the curve
ΨI and a compact set B.

We proceed to describe the algorithm. The general structure
of the algorithm closely matches that of a vanilla branch-and-
bound method [3]. Consider computing the minimum separating
distance between a curve and a convex polygon as shown in
Figure 6(a). A collection L, which stores the intervals over which
the bounds on the optimal solution are computed, is initialized
with a single element: the entire domain I . The relaxed problem
is solved over the domain I (Figure 6(b)), and the upper and
lower bound values are stored in the states d and d respectively.
If the difference between the bounds is above a prescribed
tolerance, the algorithm proceeds to the iterative phase. I is
split into sub-intervals XR and XL, over which the relaxations of
the problems on the new intervals are solved (Figure 6(c)). These
sub-intervals are added to the collection L, and the original
domain I is removed from the collection. The least upper and
lower bounds on the solution are kept track of by d and d,
respectively, on all the sub-intervals present in the collection
L. Each successive iteration sees the sub-interval with the least
lower bound chosen for subdivision. Figures 6(d) and 6(e) show
snapshots of the algorithm into the third and seventh iteration
respectively. Notice that the algorithm preferentially selects
sub-intervals closer to the polygon to subdivide because of the
best-first search strategy.

Since the minimization problem of Equation (2) is over a
continuous space, the branch-and-bound method will repeatedly
subdivide infinitely many times (whenever the objects ΨI and
B do not collide). However, by setting an absolute tolerance
ε > 0 on the solution, we obtain an ε-suboptimal solution in a
finite number of iterations, i.e.

dmin(ΨI ,B) ∈ [d, d+ ε], (15)

where d is the lower bound on the solution obtained from
the minimum separating distance algorithm. The certificate
proving that the global minimum lies in the interval shown
in Equation (15) can be obtained by examining the collection
L. Figure 6(f) highlights the solution, when the bounds are
separated by a magnitude of no more than ε. The convergence



(a) (b) (c)

(d) (e) (f)

Fig. 6: The different stages of Algorithm 1 when computing the
minimum distance between a 13th order Bézier curve and a convex
polygon.

Fig. 7: Convergence of d− d for the scenario presented in Figure 6 to
ε = 10−10.

of d− d to ε for the example presented in Figure 6 is shown
in Figure 7.

Algorithm 2 describes the procedure to evaluate the minimum
distance from ΨI to ΦJ , which is the trace of φ : J → Rd.
As one might expect, structurally very little differs between
Algorithms 1 and 2. The collection L stores pairs of sub-intervals
over which the bounds on the solution will be evaluated. The
lower and upper bounds are computed using Equations (10)
and (12) respectively. Figure 8 shows the pair of closest points
between Bézier curves computed using Algorithm 2.

Algorithm 2 Minimum Separating Distance (ΨI ,ΦJ )

1: L ← {{I,J }}
2: d← dub(ΨI ,ΦJ )
3: d← dlb(ΨI ,ΦJ )
4: while d− d > ε do
5: X ← argmin{Q,R}∈L dlb(ΨQ,ΦR)
6: XL,XR ← split(X )
7: L ← L \ {X}
8: L ← L ∪ {XL,XR}
9: d← min{Q,R}∈L dub(ΨQ,ΦR)

10: d← min{Q,R}∈L dlb(ΨQ,ΦR)
11: end while
12: return d

Remark. The XL,XR ← split(X ) operation from (line 6) of

Algorithms 1 and 2 returns two mutually disjoint sets such that
XL∪XR = X . When X is an interval, the operation must ensure
that both XL and XR are closed. And, when X is a collection of
two intervals, the operation must only split the larger interval so
as to preserve the uniform convergence property from Theorem 3.
In the implementation1, the split(X ) operation bisects the
interval X , however, uneven splitting techniques may lead to
better performance as seen in [5].

Fig. 8: Points closest between pairs of characters ’R’, ’S’, ’S’, ’1’, and
’9’ respectively, that are represented as Bézier curves. The evaluation
time for the four minimum separating distance queries was 1.14 ms.

B. Tolerance Verification

As discussed in Section I, in many applications an exact
measurement on the minimum separating distance between
objects is not required. A weaker method that verifies if two
objects are separated by a distance greater than ∆ may be
preferred for computational reasons. Since the states d and d
in Algorithms 1 and 2 keep track of the the bounds on the
global optimum, the algorithm will terminate early if either d
or d violate the ∆-tolerance, i.e. all the convex hulls formed
from the curve evaluated at the sub-intervals in collection L
are separated from the object B by a distance of at least ∆.
Algorithm 3 highlights the differences from Algorithm 1.

Algorithm 3 Tolerance Verification (ΨI , B,∆)

...
4: while d−∆ > ε do

...
11: if d > ∆ then return true
12: end while
13: return false

C. Collision Detection

Sometimes only the detection of intersection between two
objects is required. This is a special case of Algorithm 3, where
∆ = 0. Algorithm 3 highlights the differences from Algorithm 1.

Algorithm 4 Collision Detection (ΨI , B)

...
4: while d > ε do

...
11: if d > 0 then return false
12: end while
13: return true



V. COMPUTATIONAL RESULTS

We present numerical simulations of our approach for several
different proximity query problems. In general, the classes of
examples that we consider are categorized as the proximity
query between a parametric curve and a point, a convex polygon,
and another parametric curve. In these numerical problems we
only consider proximity queries in R2 for ease of viewing,
however, the algorithm will hold in general as long as there
exist methods to compute dlb and dub in the given dimension.
Examples of proximity queries for parametric curves in R3 can
be found in the online repository1. In every problem setting, the
execution times for computing the minimum separating distance,
tolerance verification and collision detection between two objects
are benchmarked. Each benchmark result is computed as the
median over 10,000 trials of the program. The implementation4

uses double-precision arithmetic, and we chose the tolerance
of ε = 10−10 to be used in the optimization procedure. For
the tolerance verification queries presented in this section, we
choose the value of ∆ as half the minimum separating distance
between the objects which they are querying.

A. Curve - Point Proximity

We show the performance of computing proximity queries
between Bézier curves and a point in R2 using our approaches
and the approach found in [5]. The control points of the curve
are uniformly randomly placed in [0, 1]× [0, 1], and the point
to which the proximity is computed is also randomly placed in
the same unit square. Figure 9 shows a few examples of the
problems that were considered.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 9: The point on a (a) 5th, (b) 10th, (c) 15th, (d) 20th, (e) 25th, (f)
30th, (g) 35th, (h) 40th, and (h) 45th Bézier curve that is closest to
another randomly chosen point.

4The algorithms are in implemented in Julia [2], and the benchmarks were
conducted on a 2.3 GHz Intel Core i5 machine with 8 Gigabytes of RAM.

The numerical simulations compute the mean execution time
over a range of different order Bézier curves as shown in
Figure 10. Notice that the computational efficiency (Figure 10(a))
of Algorithm 1 is improved compared to that of the curve
subdivision algorithm in [5]. This is in part because the
construction of the bounding region in [5] is the control
polygon of the subdivided curve that is obtained through
the expensive De Casteljau’s algorithm [11]. Furthermore, the
parameterizations of the subdivided curves are stored in a queue,
which is very memory expensive for higher order curves as
seen in Figure 10(b). On the other hand, our methods are
very memory efficient as the priority queue (expressed as the
collection L in Algorithm 1 only contains information of the
intervals. Additionally, computing proximity queries for Bézier
curves using our approach is numerically robust as Equation (6)
is also a Bézier curve and does not require any change of
basis. Approaches to compute the closed-form expression of
Equation (6) can be found in [12].

Both Algorithms 3 and 4 significantly outperform the other
methods. This is a result of the fact that the algorithms are
terminated as soon as the bounds are met on the ∆-tolerance,
rather than proceeding to obtain an ε-suboptimal solution.
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Fig. 10: The average computational time (a) and allocated memory (b)
to evaluate a proximity query between ten randomly generated Bézier
curves and a point. The algorithm presented in [5] and Algorithm 1
both use a tolerance ε = 10−10. The error bars represent the standard
deviation of the trial runs.

B. Curve - Convex Polygon Proximity

We proceed to discuss the performance of proximity queries
between parametric curves and polygons through some examples
in Figure 11. We consider the general class of absolutely
continuous parametric curves, and, since not all the curves
can be transformed5 to a Bernstein basis, we do not provide
numerical comparisons to [5] here. For the underlying routines
that compute the bounds on the solution, i.e. dlb and dub, we
use the GJK-algorithm [13] to compute the distances between
the polygons and the ellipsoidal convex hulls. Figures 11(a)
to 11(c) show proximity of curves with a sinusoidal basis with
convex polygons. It should be noted that although the Euler
spiral is defined over R, we consider its trace Figure 11(c) in the
compact subset: [−2π, 2π]. In Table II, the median execution
times for the different problems are enumerated. It should be
highlighted that the reason for the longer run times of the Euler

5Even transformations between polynomial bases are numerically unstable
for higher order polynomials [15].



(a) (b) (c) (d) (e) (f)

Fig. 11: Points closest between (a) a convex polygon and a heart-shaped curve [37], (b) a convex polygon and an epicycloid [38], (c) a convex
polygon and an Euler spiral, (d) two 10th order Bézier curves, (e) two involutes of a circle, and (f) a fish curve [36] and a Lissajous curve.

Query Median Time (µs)
(a) (b) (c) (d) (e) (f)

Alg. 1/2 208.22 234.52 150.03 ×103 425.66 1.21 ×103 3.74 ×103

Alg. 3 10.52 80.90 29.70 ×103 49.20 204.68 471.99
Alg. 4 10.38 59.19 17.08 ×103 37.66 116.22 229.25

TABLE II: The median computational time to evaluate a proximity query between each of the objects in Figure 11.

spiral is due to the evaluation of the parametric function that
requires numerical integration.

C. Curve - Curve Proximity

Similar to above, Table II also shows the performance
for computing the proximity queries for the problems in
Figures 11(d) to 11(f). As these problems require simultaneously
searching across dual parameter spaces, it is natural that the
proximity queries will have longer run times. This will be offset
if a lower ε-tolerance is chosen in the procedures.

D. Trajectory Replanning Example

To demonstrate the benefit of fast collision detection, Fig-
ure 12 shows a common situation in path replanning problems.
A vehicle is confronted with an obstacle and randomly samples a
large number of possible trajectories from a distribution to plan
a path around the obstacle [19]. For each of these trajectories, a
certificate of collision avoidance and minimum safety distance
are necessary. In this situation, 1000 quintic Bézier curves are
generated and, using Algorithm 3, a tolerance verification query
is performed against both the obstacles with a total run time
of 11.61 milliseconds. In the simulation, 818 trajectories of
the 1000 samples are in collision with at least one of the two
obstacles, 116 trajectories are collision free but violate the
minimum safety distance constraint, and only the remaining
66 trajectories are feasible. This ability to rapidly compute
the feasibility of trajectories allow for a large sample size of
trajectories to be validated in a very short amount of time. In
addition, these methods prove beneficial for predicting collisions
in dynamic environments wherein only probabilistic information
of the obstacle behavior is available [27] by computing proximity
queries with the boundary of the confidence region of an
obstacle’s trajectory.

VI. CONCLUSIONS

We have presented new algorithms for proximity queries
evaluating minimum distance, tolerance verification and collision
detection. To the authors’ knowledge, this is the first proximity

Fig. 12: An example scenario of a robot (starting on the left) attempting
to replan its trajectory around obstacles: The blue trajectories represent
feasible solutions, the red trajectories are collision-free, but infeasible
because of their close proximity to the obstacles (i.e.≤ ∆), and the
grey trajectories are infeasible, because they collide with the obstacles
in the environment.

query method that works on such a large class of parametric
curves. In addition, the methods show improved computational
speed, even compared to the methods taking advantage of a
known curve basis.

The presented proximity query algorithms are built around
an interval branch-and-bound method that provide ε-suboptimal
solutions. We present efficient methods to construct convex
hulls that enclose a parametric curve based on the upper bound
of its arc length. The convex hulls are used to compute the
lower bound on the minimum separating distance to obstacles
during the execution of the algorithm. Using this approach,
computational results are shown for the evaluation of minimum
distance, tolerance verification and collision detection between
arbitrary absolutely continuous parametric curves.
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